Bayesian Neural Networks just seem like a failed approach, unfortunately.
For one, Bayesian inference and UQ fundamentally depends on the choice of the prior, but this is rarely discussed in the Bayesian NN literature and practice, and is further compounded by how fundamentally hard to interpret and choose these priors are (what is the intuition behind a NN's parameters?). Add to that the fact that the Bayesian inference is very much approximate, and you should see the trouble.
If you want UQ, 'frequentist nonparametric' approaches like Conformal Prediction and Calibration/Multi-Calibration methods seem to work quite well (especilly when combined with the standard ML machinery of taking a log-likelihood as your loss), and do not suffer from any of the issues above while also giving you formal guarantees of correctness. They are a strict improvement over Bayesian NNs, IMO.