Monad tutorials are on the rise again.
Let's start with function composition. We know that for any two types A and B we can consider functions from A to B, written A -> B. We can also compose them, the heart of sequentiality. If f: A -> B and g: B -> C then we might write (f;g) or (g . f) as two different, equivalent syntaxes for doing one thing and then the other, f and then g.
I'll posit this is an extremely fundamental idea of "sequence". Sure something like [a, b, c] is also a sequence, but (f;g) really shows us the idea of piping, of one operation following the first. This is because of how composition is only defined for things with compatible input and output types. It's a little implicit promise that we're feeding the output of f into g, not just putting them side-by-side on the shelf to admire.
Anyway, we characterize composition in two ways. First, we want to be clear that composition only cares about the order that the pipes are plugged together, not how you assemble them. Specifically, for three functions, f: A->B, g: B->C, h: C->D, (f;g);h = f;(g;h). The parentheses don't matter.
Second, we know that for any type A there's the "do nothing" identity function id_A: A->A. This doesn't have to exist, but it does and it's useful. It helps us characterize composition again by saying that f;id = id;f = f. If you're playing along by metaphor to lists, id is the empty list.
Together, composition and identity and the rules of associativity (parentheses don't matter) and how we can omit identity really serve to show what the idea of "sequences of pipes" mean. This is a super popular structure (technically, a category) and whenever you see it you can get a large intuition that some kind of sequencing might be happening.
Now, let's consider a slightly different sort of function. Given any type types, what about the functions A -> F B for some fixed other type F. F here exists to somehow "modulate" B, annotate it with additional meaning. Having a value of F B is kind of like having a value of type B, but maybe seen through some kind of lens.
Presumably, we care about that particular sort of lens and you can go look up dozens of useful choices of F later, but for now we can just focus on how functions A -> F B sort of still look like little machines that we might want to pipe together. Maybe we'd like there to be composition and identity here as well.
It should be obvious that we can't use identity or composition from normal function spaces. They don't type-check (id_A: A -> A, not A -> F A) and they don't semantically make sense (we don't offhand have a way to get Bs out of an F B, which would be the obvious way to "pipe" the result onward in composition).
But let's say that for some type constructors F, they did make sense. We'd have for any type A a function pure_A: A -> F A as well as a kind of composition such that f: A -> F B and g: B -> F C become f >=> g : A -> F C. These operations might only exist for some kinds of F, but whenever they do exist we'd again capture this very primal form of sequencing that we had with functions above.
We'd again capture the idea of little A -> F B machines which can be plugged into one another as long as their input and output types align and built into larger and larger sequences of piped machines. It's a very pleasant kind of structure, easy to work with.
And those F which support these operations (and follow the associativity and identity rules) are exactly the things we call monads. They're type constructors which allow for sequential piping very similar to how we can compose normal functions.