Image editing model training is fascinating. One method for training image editing models involves using a second model to apply the inverse of the change you want the model to learn. Typically, the task you’re asking the second model to perform is easy, whereas the inverse task is difficult.
For example, you might ask the second model to cover the person’s face with a black square; a VLM model notes that the person is a man with brown hair and round glasses. Then, during training, the resulting image is presented along with the prompt, “Remove the black square from the man’s face. He has brown hair and round glasses.”
The model now learns how to remove black squares and replace them with a man’s face with brown hair and round glasses.
Since the training data is easily synthesized using existing models, you can generate enormous amounts of it - often very cheaply. For specialized editing tasks, this technique is really powerful. Build your training set for your special purpose task, fine tune an existing image editing model such as Qwen Image Edit to produce a new checkpoint or LoRA (often a LoRA is more than good enough) and then you have a special purpose model to perform whatever narrow editing task you need it to perform on your image data.