Dependent types are very useful for some things. For example, I wish Python had the ability to express "a 10 x 5 matrix of float32s" as a type, and typecheck that.
The Curry-Howard correspondence, using dependent type system to have "proofs" be equivalent to "types", is powerful, but it can be really confusing. From a human point of view, there is a huge difference between "Your proof is wrong" and "You wrote a statement that fails typechecking".
Intuitively, when you make an error with types, it should be something fairly trivial that you just read the error and fix it up. When you make an error in a proof, it's understandable if it's very complicated and requires thought to fix. The natural UI is different.
So I agree with the author that the greatest benefit of Lean is not its typesystem per se, but its community. Specifically the fact that Lean's library of mathematics, mathlib, is organized like an open source community with pull requests. Whereas Isabelle's library of mathematics, the AFP, is organized like a scientific journal with referees.
I'm working on a dependent type system at the moment for a new theorem prover - Acorn, at https://acornprover.org - and my hope is to combine the good points of both Lean and Isabelle. It's nice that Lean has the power to cleanly express the simple dependent types that mathematicians often use, like vector spaces or quotients. But if you use dependent types too much then it does get complicated to debug what's happening.