It's so much worse than this.
For task fMRI, the test-retest reliability is so poor it should probably be considered useless or bordering on pseudoscience, except for in some very limited cases like activation of the visual and/or auditory and/or motor cortex with certain kinds of clear stimuli. For resting-state fMRI (rs-fMRI), the reliabilities are a bit better, but also still generally extremely poor [1-3].
There are also two IMO major and devastating theoretical concerns re fMRI that IMO make the whole thing border on nonsense. One is the assumed relation between the BOLD signal and "activation", and two is the extremely horrible temporal resolution of fMRI.
It is typically assumed that the BOLD response (increased oxygen uptake) (1) corresponds to greater metabolic activity, and (2) increased metabolic activity corresponds to "activation" of those tissues. This trades dubiously on the meaning of "activation", often assuming "activation = excitatory", when we know in fact much metabolic activity is inhibitory. fMRI cannot distinguish between these things.
There are other deeper issues, in that it is not even clear to what extent the BOLD signal is from neurons at all (could be glia), and it is possible the BOLD signal must be interpreted differently in different brain regions, and that the usual analyses looking for a "spike" in BOLD activity are basically nonsense, since BOLD activity isn't even related to this at all, but rather the local field potential, instead. All this is reviewed in [4].
Re: temporal resolution, essentially, if you pay attention to what is going on in your mind, you know that a LOT of thought can happen in just 0.5 seconds (think of when you have a flash of insight that unifies a bunch of ideas). Or think of how quickly processing must be happening in order for us to process a movie or animation sequence where there are up to e.g. 10 cuts / shots within a single second. There is also just biological evidence that neurons take only milliseconds to spike, and that a sequence of spikes (well under 100ms) can convey meaningful information.
However, the lowest temporal resolutions (repetition times) in fMRI are only around 0.7 seconds. IMO this means that the ONLY way to analyze fMRI that makes sense is to see it as an emergent phenomenon that may be correlated with certain kinds of long-term activity reflecting cyclical BOLD patterns / low-frequency patterns of the BOLD response. I.e. rs-fMRI is the only fMRI that has ever made much sense a priori. The solution to this is maybe to combine EEG (extremely high temporal resolution, clear use in monitoring realtime brain changes like meditative states and in biofeedback training) with fMRI, as in e.g. [5]. But, it may still well be just the case fMRI remains mostly useless.
[1] Elliott, M. L., Knodt, A. R., Ireland, D., Morris, M. L., Poulton, R., Ramrakha, S., Sison, M. L., Moffitt, T. E., Caspi, A., & Hariri, A. R. (2020). What Is the Test-Retest Reliability of Common Task-Functional MRI Measures? New Empirical Evidence and a Meta-Analysis. Psychological Science, 31(7), 792–806. https://doi.org/10.1177/0956797620916786
[2] Herting, M. M., Gautam, P., Chen, Z., Mezher, A., & Vetter, N. C. (2018). Test-retest reliability of longitudinal task-based fMRI: Implications for developmental studies. Developmental Cognitive Neuroscience, 33, 17–26. https://doi.org/10.1016/j.dcn.2017.07.001
[3] Termenon, M., Jaillard, A., Delon-Martin, C., & Achard, S. (2016). Reliability of graph analysis of resting state fMRI using test-retest dataset from the Human Connectome Project. NeuroImage, 142, 172–187. https://doi.org/10.1016/j.neuroimage.2016.05.062
[4] Ekstrom, A. (2010). How and when the fMRI BOLD signal relates to underlying neural activity: The danger in dissociation. Brain Research Reviews, 62(2), 233–244. https://doi.org/10.1016/j.brainresrev.2009.12.004, https://scholar.google.ca/scholar?cluster=642045057386053841...
[5] Ahmad, R. F., Malik, A. S., Kamel, N., Reza, F., & Abdullah, J. M. (2016). Simultaneous EEG-fMRI for working memory of the human brain. Australasian Physical & Engineering Sciences in Medicine, 39(2), 363–378. https://doi.org/10.1007/s13246-016-0438-x