Anyone have a good explanation for why elliptic curves have a 'natural' group law? I've seen the definition of the group law in R before, where you draw a line through two points, find the third point, and mirror-image. I feel like there's something deeper going on though.
As far as I've seen, the group law is what makes elliptic curves special. Are they the _only_ flavour of curve that has a nice geometric group law? (let's say aside from really simple cases like lines through the origin, where you can just port over the additive group from R)